Software Architecture Design Document
1. Introduction
This document defines the software architecture for the project, which consists of a mobile application, a web application, intelligent advertising terminals, and management dashboards. The architecture specifies which technologies, languages, and frameworks will be used for each component.
2. Frontend Applications
2.1 Web Application
• Technology: Angular
• Language: TypeScript
• Purpose: Provides the administration dashboard and partner management interface.
• Advantages: Strong ecosystem, enterprise-ready, structured for large-scale applications.
2.2 Mobile Application
• Technology: React Native
• Language: JavaScript/TypeScript
• Purpose: Cross-platform mobile application for end users.
• Advantages: Single codebase for Android and iOS, strong community support.
2.3 Advertising Terminal Application
• Technology: Custom embedded application
• Language: C++ or JavaScript (Electron/Node.js) depending on hardware support
• Purpose: Runs on digital signage terminals, downloads, caches, and plays scheduled ads.
• Advantages: High performance for media playback, works offline when needed.
3. Backend Services
3.1 API Gateway
• Technology: Kong API Gateway or NGINX
• Language: Configuration-driven (Lua/Plugins)
• Purpose: Central entry point for all requests, handles routing, rate limiting, and authentication.
3.2 User Service
• Technology: NestJS
• Language: TypeScript
• Purpose: Manages users, roles, authentication (JWT/OAuth2).
• Advantages: Structured framework, integrates well with MongoDB and microservices.
3.3 Ads Service
• Technology: NestJS
• Language: TypeScript
• Purpose: Uploads and manages ads, metadata, and scheduling.
• Advantages: Fits well with JSON/REST APIs, asynchronous handling with Kafka.
3.4 Payment Service
• Technology: Spring Boot
• Language: Java
• Purpose: Securely processes payments and integrates with third-party providers.
• Advantages: Industry standard for financial applications, mature libraries, enterprise-grade security.
3.5 Player/Device Service
• Technology: NestJS
• Language: TypeScript
• Purpose: Manages advertising terminals, schedules synchronization, and telemetry events.
• Advantages: Easy API design, scalable microservice architecture.
3.6 AI/ML Service
• Technology: FastAPI or Flask
• Language: Python
• Purpose: Provides recommendation engine and intelligent insights.
• Advantages: Rich ecosystem for AI/ML libraries (TensorFlow, PyTorch, Scikit-learn).
3.7 Media Worker
• Technology: FFmpeg + Node.js Worker
• Language: TypeScript/JavaScript
• Purpose: Processes uploaded media, generates variants, and updates ads service.
• Advantages: Reliable video processing pipeline with automation.
4. Infrastructure
• Database: MongoDB (document storage, scalable, supports flexible schema).
• Object Storage: Amazon S3 (or equivalent) for storing videos, images, and assets.
• Event Bus: Apache Kafka for event-driven communication between microservices.
• CDN: CloudFront/Akamai for optimized global content delivery.
• Orchestration: Kubernetes for container management, scaling, and resilience.
5. Security
• Authentication: JWT/OAuth2 via API Gateway.
• Device Authentication: Secure device tokens for advertising terminals.
• Encryption: HTTPS for data in transit, S3 + database encryption at rest.
• Access Control: Role-based access for different user types (admins, partners, devices).
6. Conclusion
The chosen technologies balance scalability, security, and maintainability. Each microservice is implemented in a language and framework best suited to its domain, ensuring long-term sustainability and adaptability to new features.
